Hypoxia Requires Notch Signaling to Maintain the Undifferentiated Cell State

Maria V. Gustafsson, Xiaowei Zheng, Teresa Pereira, Katarina Gradin, Shaobo Jin, Johan Lundkvist, Jorge L. Ruas, Lorenz Poellinger, Urban Lendahl,* and Maria Bondesson†
Department of Cell and Molecular Biology
Medical Nobel Institute
Karolinska Institutet
SE-171 77 Stockholm
Sweden

Summary

In addition to controlling a switch to glycolytic metabolism and induction of erythropoiesis and angiogenesis, hypoxia promotes the undifferentiated cell state in various stem and precursor cell populations. Here, we show that the latter process requires Notch signaling. Hypoxia blocks neuronal and myogenic differentiation in a Notch-dependent manner. Hypoxia activates Notch-responsive promoters and increases expression of Notch direct downstream genes. The Notch intracellular domain interacts with HIF-1α, a global regulator of oxygen homeostasis, and HIF-1α is recruited to Notch-responsive promoters upon Notch activation under hypoxic conditions. Taken together, these data provide molecular insights into how reduced oxygen levels control the cellular differentiation status and demonstrate a role for Notch in this process.

Introduction

It is critical for multicellular organisms to maintain oxygen homeostasis, and complex mechanisms have evolved to sense oxygen levels and convert this information into appropriate physiological responses (Bruick, 2003). Hypoxia leads to a change in the energy metabolism that shifts from oxidative phosphorylation to glycolysis. In addition, induction of angiogenesis serves to increase vascular density in an area of localized hypoxia within a tissue, and, in response to systemic hypoxia, erythropoiesis is induced. Hypoxia is also a pathophysiological component of many disorders, including ischemic diseases and cancer (Semenza, 2001).

Cells have developed a molecular signaling mechanism for oxygen sensing. An important mediator is the transcription factor HIF-1α, which is hydroxylated at specific proline residues by prolyl hydroxylases that act as oxygen sensors (Bruick and McKnight, 2001; Epstein et al., 2001). At normoxia, hydroxylation of HIF-1α (Ivan et al., 2001; Jaakkola et al., 2001) leads to decreased stability of HIF-1α through rapid ubiquitylation and degradation by the 26S proteasome. HIF-1α is ubiquitylated by the E3 ubiquitin ligase pVHL (von Hippel-Lindau tumor suppressor protein) (Cockman et al., 2000; Oth et al., 2000; Tanimoto et al., 2000). Under hypoxic conditions, HIF-1α levels are elevated as a result of reduced ubiquitylation and decreased proteasome-mediated degradation. Stabilized HIF-1α binds, in conjunction with HIF-1β (also referred to as ARNT), to hypoxia response elements (HREs) present in the promoters and enhancers of several effector genes. Among the known HIF-1α target genes are genes important for angiogenesis, erythropoiesis, and glucose metabolism, such as vascular endothelial growth factor (VEGF), erythropoietin, and phosphoglycerate kinase 1 (PGK1), respectively (reviewed by Semenza, 2001; Bruick, 2003).

In addition to altering cellular energy metabolism and angiogenesis, hypoxia influences proliferation and differentiation of various stem/progenitor cell populations. This was originally described in neural crest (Morrison et al., 2000) and CNS stem cells (Studer et al., 2000). Culturing of neural crest stem cells at 5% O2 results in increased proliferation and the formation of more multipotent clones as compared to culturing at 20% O2 (Morrison et al., 2000). Experimental differentiation of neural crest stem cells under hypoxic conditions allows the cells to differentiate into the sympathoadrenal lineage, a lineage choice not observed in normoxia (Morrison et al., 2000). For CNS precursor cells, culturing at reduced oxygen levels results in increased proliferation and reduced cell death, yielding an increased number of precursor cells. Likewise, differentiation toward the dopaminergic fate was increased (Studer et al., 2000).

In addition, hypoxia leads to inhibition of adipocyte differentiation (Yun et al., 2002). As a consequence of these findings, hypoxia is now routinely included in several stem cell culturing protocols to improve yields of stem cells (Rajan et al., 2003). Collectively, these data from different cell types suggest the existence of a more general link between hypoxia and maintenance of the undifferentiated cell state, but little is known about the cellular signaling mechanisms underpinning this process.

Notch signaling is an attractive candidate for this process, as it often functions to maintain the stem/progenitor cell state, for example in myogenesis (Noziger et al., 1999; Dahquist et al., 2003) and hematopoiesis (Varnum-Finney et al., 2000). Notch signaling is evolutionarily highly conserved and critical for controlling cell fate choices in most metazoan species (Artavanis-Tsakonas et al., 1999; Hansson et al., 2004). The Notch receptor undergoes a complex series of at least three different proteolytic cleavages. Activation by DSL (Delta, Serrate, and Lag-2) ligands presented on neighboring cells eventually leads to the liberation of the Notch intracellular domain (Notch ICD), which translocates to the nucleus and interacts with the DNA binding protein CSL (also referred to as RBP-Jk and CBF-1) in mammals, and Suppressor of Hairless [Su(H)] in Drosophila. This leads to activation of Hey and Hes genes (the latter is also known as Herp, Hesr, Hesr, HRT, CHF, and gridlock), which, in turn, reduces expression or blocks the function of downstream transcriptional effectors like Neuro-
Figure 1. Hypoxia-Induced Inhibition of Myogenic and Neuronal Differentiation Requires Functional Notch Signaling

(A) Differentiated (MHC-positive) C2C12 cells at normoxia or hypoxia in the presence or absence of γ-secretase inhibitor (L-685,458).

(B) Quantification of the percentage of MHC-positive C2C12 cells, relative to DAPI-stained nuclei. ** indicates significant at p < 0.01, and ^ indicates not significant at p > 0.05 by Student’s t test. The bars represent the mean ± SE of three independent experiments performed in duplicate.

(C) Differentiated (MHC-positive) satellite cells at normoxia or hypoxia in the presence or absence of γ-secretase inhibitor (L-685,458).

(D) Quantification of the percentage of MHC-positive satellite cells, relative to DAPI-stained nuclei.

(E) Differentiated (Tuj-1-positive) neural stem cells (nsc) treated with hypoxia or kept at normoxia in the presence or absence of γ-secretase inhibitor (L-685,458).

(F) Quantification of the percentage of Tuj-1-positive neural stem cells, relative to DAPI-stained nuclei.

(G) Proliferative index of neural stem cells (phospho-histone-3 positive) treated with hypoxia or kept at normoxia in the presence or absence of the γ-secretase inhibitor L-685,458.
genin (Cornell and Eisen, 2002), Mash (de la Pompa et al., 1997), and MyoD (Kopan et al., 1994).

In this report, we asked if Notch signaling plays a role in how hypoxia maintains cells in a more undifferentiated state. We show that hypoxia blocks differentiation of neuronal and myogenic progenitors and that this requires functional Notch signaling. Hypoxia leads to recruitment of HIF-1α to a Notch-responsive promoter and elevated expression of Notch downstream genes.

Results

Hypoxia Inhibits Differentiation in the Myogenic Cell Line C2C12, in Satellite Cells, and in Neural Stem Cells

To test whether hypoxia inhibits differentiation in a cell system that depends on Notch signaling to block differentiation, we first analyzed the myogenic C2C12 cell line. C2C12 cells can be induced to fuse and form myotubes expressing myosin heavy chain (MHC) protein (Soukop et al., 1995), a marker for terminally differentiated myocytes. This process is regulated by Notch, as coculturing with ligand-expressing cells or introduction of the Notch ICD blocks differentiation (Kopan et al., 1994; Kuroda et al., 1999). Culturing of C2C12 cells at hypoxia (1% O₂) for 4 days resulted in a 4-fold decrease in the number of differentiated cells (32% and 8% MHC-positive cells at normoxia and hypoxia, respectively) (Figures 1A and 1B). To establish whether the inhibition of differentiation was linked to Notch signaling, C2C12 cells were simultaneously treated with hypoxia and a γ-secretase inhibitor (L-685,458), which prevents Notch cleavage and thus the release of Notch ICD from the membrane (Dahlqvist et al., 2003). L-685,458 treatment resulted in a substantial abrogation of the hypoxia-induced inhibition of differentiation, as 25% of the cells were MHC positive (Figures 1A and 1B). This suggests that the hypoxia-induced inhibition of C2C12 differentiation is to a considerable extent dependent on functional Notch signaling. To address whether this Notch dependency is also observed in primary myogenic cells, we tested the same combination of hypoxia and L-685,458 in satellite cells. Reduced differentiation was observed at hypoxia, and differentiation was substantially restored in the presence of L-685,458 (Figures 1C and 1D).

To study whether hypoxia and Notch signaling are also linked in other stem/precursor cell types, we analyzed primary neural stem cells, derived from embryonic rat cortex (Johe et al., 1996; Hermanson et al., 2002). These cells are maintained as neural precursor cells by the presence of fibroblast growth factor-2 (FGF-2) in the culture medium, and they begin to differentiate when FGF-2 is withdrawn (Johe et al., 1996). In keeping with previous reports (Johe et al., 1996), a substantial increase in the proportion of neuronally differentiating, i.e., Tuj-1-expressing cells, was observed at 48 hr after FGF-2 withdrawal (22%; Figures 1E and 1F), as compared to 6% when FGF-2 was supplemented to the medium (data not shown). Culture of the cells under hypoxic conditions for 48 hr after FGF-2 withdrawal resulted in a decrease in the number of Tuj-1-positive cells from 22% to 14% (Figures 1E and 1F). The addition of L-685,458 during the 48 hr period completely rescued the inhibitory effect on neuronal differentiation exerted by hypoxia, as 24% of the cells now were Tuj-1 positive (Figures 1E and 1F). The reduction in Tuj-1-positive cells in hypoxia was accompanied by an increase in the number of proliferating cells and a decrease in apoptotic cells (Figures 1G and 1H), whereas the proportion of GFAP-expressing cells was not significantly altered (Figure S1; see the Supplemental Data available with this article online). Taken together, these data establish that the hypoxia-induced effect on blocking neuronal and myogenic differentiation requires functional Notch signaling.

Hypoxia Increases Expression of Notch Downstream Genes in a Notch-Dependent Manner

As the experiments described above implicated Notch signaling in mediating the effect of hypoxia on differentiation, we next wanted to investigate whether expression of Notch immediate downstream genes (Hes and Hey) (Greenwald, 1998; Mumm and Kopan, 2000) was altered by hypoxia. We therefore analyzed by real-time PCR Hes and Hey mRNA levels in C2C12 and neural stem cells. In C2C12 cells, Hes-1 mRNA levels were not altered by hypoxia (data not shown), whereas Hey-2 mRNA levels were increased 12-fold after 4 hr of hypoxia treatment (Figure 1I). In neural stem cells, Hes-1 expression was increased 1.8-fold after 4 hr of hypoxic treatment when compared to cells grown in normoxia (Figure 1J).

To study the relationship between hypoxia and Notch signaling in more detail, we analyzed the hypoxic response in the embryonic carcinoma cell line P19 (McBurney, 1993), which can undergo neuronal differentiation controlled by Notch signaling (Nye et al., 1994). Hypoxia resulted in 4-fold elevated Hes-1 mRNA expression in P19 cells (Figure 2B). We next analyzed whether the observed increase in Hes-1 mRNA levels was a result of transcriptional activation. A Hes-1 reporter construct composed of 0.3 kb of the Hes-1 promoter linked to the luciferase gene (Hes-1-luc) (Jarrault et al., 1995) was transfected into P19 cells. Hypoxia markedly increased expression of the reporter gene, and this increase was largely reduced by L-685,458 (Figure 2B), which suggests that cleavage of the Notch receptor is required. An alternative way to measure Notch-mediated transcriptional activation is to use a synthetic, highly Notch-specific promoter construct. This promoter, 12XCSL-luc, is composed of six multi-

(H) Apoptotic index of neural stem cells at normoxia or hypoxia in the presence or absence of the γ-secretase inhibitor (L-685,458).
(I) Quantitative RT-PCR of Hey-2 mRNA after 4 hr of hypoxia treatment of C2C12 cells.
(J) Quantitative RT-PCR of Hes-1 mRNA after 4 hr of hypoxia treatment of neural stem cells. Values are significant at **p < 0.01 and *p < 0.05, as indicated in the figure. Bars represent Hey or Hes mRNA expression relative to expression of β-actin.

Data shown represent the mean ± SE of three independent experiments performed in triplicate.
Figure 2. Hypoxia Increases Notch Signaling in P19 Cells

(A) Quantitative RT-PCR of Hes-1 mRNA in P19 cells cultured at hypoxia for 4 hr. Values are presented as Hes-1 mRNA expression relative to expression of β-actin. Bars represent the mean ± SE of three independent experiments performed in triplicate.

(B) Activation of Hes-1-luc in P19 cells treated with hypoxia for 12 hr or kept at normoxia in the presence or absence of γ-secretase inhibitor for 15 hr.

(C) Activation of 12XCSL-luc after treatment by normoxia, hypoxia, CoCl₂ (100 μM), or 2,2'-dipyridyl (100 μM) for 12 hr in the presence or absence of γ-secretase inhibitor for 15 hr.

(D) Hes-1-luc activation after expression of Notch 1 ICD in P19 cells grown at normoxia or hypoxia for 14 hr.

(E) Hes-1-luc activation after Notch 1 ICD expression after treatment with CoCl₂ (100 μM), 2,2'-dipyridyl (100 μM), or FeCl₂ (100 μM) for 14 hr.

(F) Activation of Hes-1-luc by Notch 1 ICD expression in P19 cells grown in normoxia in the presence or absence of ciclopirox olamine (5 μM) for 14 hr.

(G) Activation of 12XCSL-luc by Notch 1 ICD during normoxia in the presence or absence of ciclopirox olamine (5 μM). The graphs represent fold activation relative to β-galactosidase expression. Values are significant at **p < 0.01 or *p < 0.05, as indicated in the figure. The bars represent the mean ± SE of two independent experiments performed in triplicate.

Hypoxia Increases the Activity of Notch 1 ICD

The activation of a Notch response by hypoxia could conceivably involve a number of levels in the Notch signaling system. The γ-secretase inhibitor experiments described above suggest that liberation of Notch ICD is required for the hypoxic response. Transfection of a Notch 1 ICD expression plasmid activated the Hes-1-luc reporter gene 10-fold in normoxia, consistent with previous reports (Beatus et al., 2001; Blokzijl et al., 2003). This activation was elevated to 27-fold under hypoxic conditions (Figure 2D). When Notch 1 ICD-expressing cells were exposed to CoCl₂ or 2,2'-dipyridyl, Hes-1-luc expression increased to levels similar to those observed in hypoxia-treated cells (approximately 20-fold) (Figure 2E). Moreover, exposure of transfected cells to ciclopirox olamine resulted in elevated expression of both the Hes-1-luc and 12XCSL-luc reporters (Figures 2F and 2G). In the converse experiment, elevation of Fe²⁺ levels by addition of FeCl₂ resulted in reduced Hes-1-luc expression, both in cells with endogenous Notch signaling as well as in cells transfected with Notch 1 ICD (Figure 2E). The addition of FeCl₂ has previously been shown to enhance prolyl 4-hydroxylase activity, to enhance interaction of HIF-1α with pVHL, and, subsequently, to promote degradation of HIF-1α (Ivan et al., 2001; Jaakkola et al., 2001). Taken together, these data demonstrate that hypoxia and hypoxia-mimicking agents known to regulate HIF function affected signaling mediated by the Notch intracellular domain.

Hypoxia Stabilizes the Notch 1 ICD

To test whether the stability of Notch ICD was altered by hypoxia, we measured the protein levels of Notch 1 ICD in P19 cells under normoxic and hypoxic conditions in a pulse-chase experiment. To more closely re-
Crosstalk between Hypoxia and Notch

Figure 3. Hypoxia or Ectopically Expressed HIF-1α Elevates Notch 1 ICD Protein Levels and Increases the Notch Downstream Response

(A) Notch 1 ICD was transfected into P19 cells and labeled in a pulse-chase experiment with 35S-methionine. The cells were grown at hypoxia or normoxia and harvested after a chase of indicated length. Notch 1 ICD was immunoprecipitated and analyzed by SDS-PAGE, followed by autoradiography.

(B) Endogenous expression of HIF-1α in P19 cells grown at normoxia or hypoxia or in the presence of 2,2'-dipyridyl (100 μM) or CoCl₂ (100 μM) for 8 hr. HIF-1α was immunoprecipitated, separated by SDS-PAGE, and detected by Western blot by using an anti-HIF-1α antibody.

(C) Western blot analysis of Myc-Notch ICD protein levels in COS-7 cells at normoxia or hypoxia after expression of Myc-Notch 1 ICD alone or after coexpression with HIF-1α or HIF-1α(1–390).

(D) Quantitative RT-PCR of Hey-2 mRNA after 6 hr of hypoxia treatment of wild-type (+/+) or HIF-1α-deficient (−/−) mEF cells. Values are significant at **p < 0.01 and are not significant at ^p > 0.05, as indicated in the figure. Bars represent Hey-2 mRNA expression relative to expression of β-actin. Data shown represent the mean ± SE of two independent experiments performed in triplicate.

(E) RT-PCR of PGK1 mRNA in HIF-1α (+/+) and (−/−) mEF cells cultured at normoxia or hypoxia for 6 hr.

Notch 1 ICD Interacts with HIF-1α, but Not with pVHL

In light of the Notch 1 ICD stabilization data, we examined whether Notch ICD physically interacts with HIF-1α or pVHL. Immunoprecipitation of FLAG-HIF-1α revealed an interaction with 35S-labeled Notch 1 ICD, and, conversely, immunoprecipitation of Myc-Notch 1 ICD demonstrated an interaction with 35S-labeled HIF-1α (Figure 4A). In contrast, no interaction between Notch ICD and pVHL was observed, whereas, as expected, PGK1 mRNA levels were increased during hypoxia only in the wild-type, but not in the HIF-1α−/− mEFs cells (Figure 3E).
Figure 4. Notch Interacts with HIF-1α, but Not with pVHL

(A) In vitro-translated FLAG-HIF-1α and 35S-Myc-Notch 1 ICD was immunoprecipitated with anti-FLAG (left panel) or FLAG-35S-HIF-1α, and Myc-Notch 1 ICD was immunoprecipitated with anti-Myc (right panel) and subjected to SDS-PAGE and autoradiography.

(B) In vitro-translated 35S-pVHL, FLAG-HIF-1α, and Myc-Notch 1 ICD were immunoprecipitated with anti-Myc or anti-FLAG, as indicated and analyzed by SDS-PAGE and autoradiography.

(C) Schematic representation of the several FLAG-tagged HIF-1α mutants used to map the interaction domain (left). 35S-Notch ICD and different FLAG-tagged HIF-1α mutants (as indicated) were immunoprecipitated with anti-FLAG (right panel) and subjected to SDS-PAGE and autoradiography.

(D) Relative luciferase activity after cotransfection of 12XCSL-luc with Notch 1 ICD and HIF-1α into P19 cells grown at normoxia and hypoxia for 16 hr.

(E) A transactivation dead HIF-1α, HIF-1α(1–390), does not enhance Notch ICD-induced activation of 12XCSL-luc at normoxia, whereas wild-type HIF-1α does.

(F) HIF-1α, but neither HIF-1α(1–390) nor Notch 1 ICD, significantly activates transcription of the hypoxia response element (HRE-luc) in P19 cells.

(G) Hypoxia significantly increases the HIF transactivation potential of the HRE-luc reporter gene after cotransfection into A-498 VHL-deficient cells.

(H) Relative luciferase activity after cotransfection of Hes1-luc and Notch 1 ICD in A-498 cells grown at normoxia or hypoxia for 16 hr.

(I) Relative luciferase activity after cotransfection of 12XCSL-luc with Notch 1 ICD in VHL-deficient cells grown at normoxia or hypoxia for 16 hr. Values are presented as fold activation of luciferase expression relative to β-galactosidase expression.

Values are significant at **p < 0.01, *p < 0.05, and *p < 0.06, as indicated in the figure. The bars represent the mean ± SE of two independent experiments performed in triplicate.
pected (Cockman et al., 2000; Oh et al., 2000; Tanimoto et al., 2000), HIF-1α and pVHL interacted (Figure 4B). pVHL did not significantly increase the level of ubiquitylation of Notch 1 ICD, while Sel-10 markedly elevated Notch 1 ICD ubiquitylation (data not shown), in agreement with previous reports (Oberg et al., 2001). Taken together, these observations suggest that the primary link between hypoxia and Notch signaling involves an interaction between Notch ICD and HIF-1α, but not a direct interaction between Notch ICD and pVHL. To find out which domain(s) in HIF-1α is responsible for the observed interaction, we generated a set of truncated FLAG-tagged HIF-1α constructs and tested their potential to interact with Notch 1 ICD. In Figure 4C, we show that a HIF-1α protein lacking only the N-terminal transactivation domain (N-TAD) and the truncated proteins HIF-1α(1–584), HIF-1α(392–531), and HIF-1α(392–622) (Figure 4C; left panel) interacted with Notch 1 ICD, as did a form of HIF-1α containing amino acid residues 1–390 linked to 629–822, i.e., lacking residues 391–628 (Figure 4C; right panel). In contrast, the N-terminally truncated HIF-1α(531–822) showed no interaction with Notch 1 ICD. These data indicate that there is an interaction domain in the N-terminal portion of HIF-1α spanning amino acid residues 1–390, and a second domain in the region corresponding to amino acid residues 390–531. The C-terminal region of HIF-1α, from amino acid residue 531 to the C terminus, which is required for transactivation (Ruas et al., 2002; Carrero et al., 2000), appears to be dispensable for interaction with Notch 1 ICD.

The C-Terminal Transactivation Domain of HIF-1α Is Required for Increased Notch Signaling

The protein interaction data suggest a role for HIF-1α in the stabilization of Notch ICD and increase in Notch signaling. Transfection of HIF-1α together with Notch 1 ICD into P19 cells resulted in elevated levels of 12XCSL-luc expression, both at normoxia and hypoxia (Figure 4D). In contrast, cotransfection of Notch 1 ICD together with HIF-1α(1–390) did not activate 12XCSL-luc (Figure 4E), and similar data were obtained for the other HIF-1α mutants that interacted with Notch, i.e., HIF-1α(1–584) and HIF-1α(392–531) (data not shown). As a control, wild-type HIF-1α, but not HIF-1α(1–390), was shown to activate an HRE-luc construct (Figure 4F). Conversely, transfected Notch ICD had no detectable effect on HRE-luc activation (Figure 4F). In conclusion, these data show that although the HIF-1α interaction interface with Notch 1 ICD is located in the N-terminal region of HIF-1α, hypoxia-dependent enhancement of Notch signaling requires the C-terminal region of HIF-1α.

Next, we investigated the Notch response to hypoxia in the pVHL-deficient cell line A-498 (Gnarra et al., 1994), in which the levels of HIF, in this case HIF-2α, are elevated both during normoxia and hypoxia (data not shown), but in which HIF is a more potent transcriptional activator of an HRE-luc construct during hypoxia (Figure 4G), in keeping with previous reports (Lando et al., 2002b). In this cell line, hypoxia also led to enhanced Notch ICD-induced Hes-luc and 12XCSL activities as compared to normoxic conditions (Figures 4H and 4I). Taken together, these data demonstrate that the transactivation domain of HIF-1α is required for inducing Notch activity, and they further suggest that not only the amount, but also the activity status, of HIF-1α is important for its ability to activate Notch signaling via Notch ICD.

In the next set of experiments, we investigated the role of FIH-1 (factor inhibiting HIF-1α) on activation of the Notch response in hypoxia. FIH-1 reduces the transcriptional activity of HIF-1α by hydroxylating the asparagine residue 803 of HIF-1α, which, in turn, blocks HIF coactivator binding (Lando et al., 2002a). As shown in Figure 5A, Notch 1 ICD-induced activation of 12XCSL-luc was inhibited by transfection of FIH-1 in P19 cells under either normoxic or hypoxic conditions. Interestingly, cotransfection of FIH-1 significantly reduced activation by Notch 1 ICD also in the absence of transfected HIF-1α both at hypoxia and normoxia. This suggests that FIH-1 either affects endogenous HIF activity or that FIH-1 plays a more direct role in the regulation of Notch signaling, especially as the HIF-1α levels are quite low during normoxia (Figure 5A). We also performed protein-protein interaction assays by using bacterially expressed GST-tagged FIH-1 and 35S-labeled in vitro-translated Notch 1 ICD. In these assays, FIH-1 demonstrated an interaction with Notch 1 ICD, albeit at lower levels than with HIF-1α (Figure 5B).

As the FIH-1 effect may involve CBP/p300 (Lando et al., 2002a), we tested whether a Notch 1 ICD mutant, which carries a mutation in the CBP/p300 binding site, and, thus, is incapable of interacting with CBP/p300 (Notch 1 N-terminal region of HIF-1α was observed in the C2C12 cells 4 hr after coculture (Figure 6A). When C2C12 cells were stably expressing the Serrate 1 (Jagged 1) ligand, and the cleaved Notch 1 ICD was observed in the C2C12 cells only in response to hypoxia, elevated HIF-1α protein levels were seen 4 hr after the change from normoxic to hypoxic conditions (Figure 6A). In order to monitor chromatin interactions only in the C2C12 cells, not in...
Developmental Cell

Figure 5. FIH-1 Negatively Regulates Notch Signaling in P19 Cells

(A) Coexpression of 12xCSL-luc and Notch 1 ICD with FIH-1 and/or HIF-1α shows that FIH-1 significantly decreases Notch 1 ICD-dependent activation of 12xCSL-luc both at normoxia and hypoxia.

(B) FIH-1 interacts with Notch 1 ICD. In vitro-translated, 35S-methionine-labeled Notch 1 ICD or HIF-1α were precipitated by bacterially expressed GST-tagged FIH-1 by using glutathione-Sepharose beads.

(C) Coexpression of 12xCSL-luc and Notch 1 ICD or Notch LDE/AAA during normoxia and hypoxia. Note that the activity of Notch LDE/AAA is increased during hypoxia.

(D) Coexpression of TRH-luc with TRα and/or FIH-1 in normoxia.

Values are significant at **p < 0.01, as indicated in the figure. The bars represent the mean ± SE of two independent experiments performed in triplicate.

The ChIP experiments demonstrated that there were only low levels of Notch ICD bound to the Hey-2 promoter in non-Notch-activated C2C12 cells, and that these levels were considerably increased when C2C12 cells were cocultured with Serrate 1-expressing 293T cells, both at normoxia and hypoxia (Figure 6B, second panel from top). These results are in agreement with recently published observations regarding the Hes-1 promoter (Fryer et al., 2004). Interestingly, under the combination of hypoxia and ligand-activation of Notch, binding of HIF-1α to the Hey-2 promoter was observed (Figure 6B, top panel). However, HIF-1α was not detected at the Hey-2 promoter when Notch signaling was not activated. Analysis of the PGK1 promoter showed that HIF-1α was present at the promoter only in hypoxia, and that the interaction was somewhat elevated when C2C12 cells were cocultured with Serrate 1-expressing cells (Figure 6B, third panel from top). In contrast, we did not detect any interaction between Notch 1 ICD and the PGK1 promoter (Figure 6B, lower panel). Finally, we wanted to establish whether Notch signaling affected transcription mediated by the PGK1 promoter. We observed an increase in the production of PGK1 mRNA in response to hypoxia in the C2C12 cells, and this increase was slightly reduced in the presence of the γ-secretase inhibitor L-685,458 (Figure 6C). In conclusion, these data show that HIF-1α in response to hypoxia and Notch signaling is recruited to a Notch-responsive promoter.

Discussion

Hypoxia controls many important aspects of cellular life, and a recently discovered function of hypoxia is to regulate differentiation in stem/precursor cells in culture. In CNS precursors, increased proliferation and reduced apoptosis are observed in hypoxia (Studer et al., 2000), while hypoxic neural crest stem cells show promoted survival and proliferation coupled with a broader differentiation potential than in normoxia (Morrison et al., 2000). In this report, we asked whether Notch signaling plays a role in converting the information generated in hypoxia to a signal for maintenance of an undifferentiated cellular state.

We found that hypoxia led to an inhibition of differentiation in cortical neural stem cells, myogenic satellite...
cells, and C2C12 cells, and that pharmacological blocking of Notch signaling by a γ-secretase inhibitor alleviated this inhibition and restored differentiation under hypoxic conditions. Similarly, we observed activation of direct Notch downstream genes by hypoxia, in agreement with a previous report on upregulation of Hes-1 mRNA levels in neuroblastoma cells in response to hypoxia (Jogi et al., 2002). Activation of the Notch signaling pathway, which includes stabilization of Notch 1 ICD by hypoxia, appears to be mediated via canonical Notch signaling, i.e., through Notch ICD-CSL interaction, and not to involve direct DNA binding by HIF-1α, as a synthetic, highly Notch-specific promoter, containing only CSL binding sites and no perfect HIF-1α responsive elements, was strongly activated under the same conditions.

To our knowledge, the link between Notch signaling and hypoxia represents a novel facet of the hypoxic response. In the canonical hypoxic response, hypoxia acts by altering the stability and activity of HIF-1α, leading to binding of HIF-1α to HRE-containing regulatory elements in specific target genes and activation of such genes, e.g., PAI-1, VEGF, PGK1, transferrin, and erythropoietin. The difference between the canonical hypoxic response and the transfer of hypoxic information into the Notch signaling pathway resulting in the activation of bona fide Notch response genes is schematically depicted in Figure 7.

The present data provide strong evidence for a mechanism of crosstalk between Notch and HIF-1α signaling pathways, and this mechanism bears an interesting similarity to the recently elucidated mechanism for crosstalk between Notch and BMP/TGF-β signaling. In this case, activation of BMP or TGF-β signaling leads to activation of Notch through interactions between the intracellular BMP mediator SMAD1 (or SMAD3 for TGF-β signaling) with Notch ICD (Blokzijl et al., 2003; Dahlqvist et al., 2003) (reviewed in Kluppel and Wrana, 2005). SMAD1 interacts with Notch ICD and activates Hes and Hey transcription. In analogy to the enhancement of Notch signaling by hypoxia, BMP signaling is capable of eliciting a response mediated by the 12XCSL-luc promoter, indicating that there is no need for SMAD DNA binding, as the 12XCSL promoter is devoid of SMAD binding sites. Similar to the Notch-hypoxia interaction, BMP also blocks myogenic differentiation in C2C12 cells in a Notch-dependent manner (Dahlqvist et al., 2003).

The data presented here indicate that Notch ICD and HIF-1α are important at the convergence point between the two signaling mechanisms. The importance of Notch ICD is underlined by the ability of γ-secretase inhibitors, which block the S3 cleavage of the Notch receptor and thus liberation of Notch ICD, to strongly reduce the hypoxic response on Notch downstream genes and promoters. Furthermore, the signaling output from an exogenously introduced Notch 1 ICD was modified by hypoxia, leading to increased activation of 12XCSL-luc and Hes-luc in a Notch 1 ICD-dependent manner. The importance of HIF-1α in this process receives support from the observed interaction between HIF-1α and Notch 1 ICD, the lack of an hypoxia-induced effect on Notch signaling in fibroblasts devoid of HIF-1α, and that both the amount and activity status

Figure 6. HIF-1α Binds to a Notch-Responsive Promoter in Cells Grown at Hypoxia and with Activated Notch Signaling

(A) Expression levels of Notch 1 ICD and HIF-1α in C2C12 cells grown at normoxia or hypoxia after coculture with 293T cells stably expressing the Serrate 1 ligand (+) or with control 293T cells (–) for 4 hr. Upper panel: Western blot analysis with anti-HIF-1α and anti-cleaved Notch antibodies. Lower panel: PCR primers amplifying a part of the Hey-2 or PGK1 promoters are specific for mouse DNA (C2C12 cells).

(B) ChIP analysis of recruitment of Notch 1 ICD and HIF-1α to the Hey-2 or PGK1 promoters. On top, a schematic depiction of the Hey-2 and PGK1 promoters with the amplified promoter regions and the positions of the CSL binding site (Hey-2) and the HRE sites (PGK1) denoted. For the ChIP experiments, C2C12 cells were either cocultured with Serrate 1-expressing 293T cells (+) or with mock 293T cells (–), cultured at normoxia or hypoxia, as indicated. Top panel: immunoprecipitation for HIF-1α or Notch-1, PCR amplification of the Hey-2 promoter. Bottom panel: immunoprecipitation for HIF-1 or Notch 1 ICD, PCR amplification of the PGK1 promoter. (C) RT-PCR of PGK1 mRNA in C2C12 cells cultured at normoxia or hypoxia for 16 hr in the presence or absence of L-685,485.

Figure 7. Crosstalk between Hypoxia and Notch

The diagram illustrates the interaction between hypoxia and Notch signaling, highlighting the role of HIF-1α in promoting Notch activation and the reciprocal interaction between the two pathways.
of HIF-1α correlated with the level of Notch activation. The latter notion is based on the observations that: (1) transfected HIF-1α elevated the Notch downstream response, (2) a transactivation-inactive form of HIF-1α left the Notch response unchanged, and (3) the response was augmented in cells lacking VHL. Finally, HIF-1α was recruited to the Hey-2 promoter in C2C12 cells in a Notch- and hypoxia-dependent manner. This suggests a mechanism involving an effect of direct transcriptional activation of a Notch-responsive promoter by HIF-1α, probably as part of a Notch ICD/CSL transcriptional complex (Figure 7). This model is consistent with the observation that a transcriptionally inactive form of HIF-1α, which was capable of interacting with Notch 1 ICD, did not augment the Notch downstream response. We therefore reason that hypoxia-dependent stabilization of Notch ICD is not sufficient for activation of the Notch response but may require the recruitment of a form of HIF-1α containing the C-terminal transactivation domain to the Notch ICD/CSL regulatory complex, possibly potentiating the interaction with transcriptional coactivators. This hypothesis is based on the finding that HIF-1α is recruited to promoters of Notch downstream genes and the observation that a mutated form of Notch ICD, unable to interact with CBP/p300, was transcriptionally active at hypoxia. In this context, it will be interesting to learn whether HIF-1β also participates in such a regulatory complex.

The link between hypoxia and Notch described here may have ramifications for other aspects of hypoxia, such as tumor development, in which deregulation of both HIF-1α- and Notch-mediated signaling events have been implicated (Radtke and Raj, 2003; Weng and Aster, 2004). As many tumors show elevated expression of HIF-1α, caused by hypoxia inherent to growing tumors and/or genetic loss of VHL (Kondo and Kaelin, 2001), it will be interesting to investigate whether the elevated levels of HIF-1α are paralleled by increased Notch signaling, and whether the ensuing Notch induction contributes to tumor development.

In conclusion, the data presented here demonstrate a link between hypoxia and Notch signaling and provide insights into how hypoxia maintains the undifferentiated cell state, by using the Notch signaling mechanism. The data also point to an important role for HIF-1α in this process and to the fact that it can interact with the Notch intracellular domain to link hypoxic information to a Notch response. These data advance our understanding of how Notch crosstalks with other signaling mechanisms and may open up possibilities to control various aspects of the hypoxic response by experimentally manipulating Notch signaling.

Experimental Procedures

Plasmid Constructs

Hes-1 luciferase, 12XCSL luciferase, and TRH-luc reporter constructs have previously been described (Jarriault et al., 1995; Kato et al., 1997; Balkan et al., 1998). The generation of other constructs used is described in the Supplemental Data available with this article online.

Cell Culture

Mouse myogenic cell line C2C12 and mouse embryonic teratocarcinoma cell line P19 were grown in Dulbecco's modified Eagle's medium (DMEM), supplemented with 10% fetal bovine serum (FBS). P19 cells were grown on gelatin-coated dishes. Satellite cells were cultured as previously described (Dahlqvist et al., 2003). Cortical embryonic stem cells were isolated from rat E14-15 and were cultured in N2 medium. For experimental treatment of cells, see the Supplemental Data.

Immunocytochemistry

Cells were fixed in 4% paraformaldehyde, washed with PBS, blocked in blocking solution (3% BSA, 1% Triton X-100 in PBS) for 20 min, and incubated with primary antibody for 1 hr. The antibodies used were mouse anti-myosin heavy chain; anti-MHC (MF20, Hybridoma Developmental Studies) diluted 1:15, mouse anti-Tuj-1, and/or genetic loss of VHL, and/or certain hypoxia, such as tumor development, in which deregulation of both HIF-1α- and Notch-mediated signaling events have been implicated (Radtke and Raj, 2003; Weng and Aster, 2004). As many tumors show elevated expression of HIF-1α, caused by hypoxia inherent to growing tumors and/or genetic loss of VHL (Kondo and Kaelin, 2001), it will be interesting to investigate whether the elevated levels of HIF-1α are paralleled by increased Notch signaling, and whether the ensuing Notch induction contributes to tumor development.

In conclusion, the data presented here demonstrate a link between hypoxia and Notch signaling and provide insights into how hypoxia maintains the undifferentiated cell state, by using the Notch signaling mechanism. The data also point to an important role for HIF-1α in this process and to the fact that it can interact with the Notch intracellular domain to link hypoxic information to a Notch response. These data advance our understanding of how Notch crosstalks with other signaling mechanisms and may open up possibilities to control various aspects of the hypoxic response by experimentally manipulating Notch signaling.

Experimental Procedures

Plasmid Constructs

Hes-1 luciferase, 12XCSL luciferase, and TRH-luc reporter constructs have previously been described (Jarriault et al., 1995; Kato et al., 1997; Balkan et al., 1998). The generation of other constructs used is described in the Supplemental Data available with this article online.

Cell Culture

Mouse myogenic cell line C2C12 and mouse embryonic teratocarcinoma cell line P19 were grown in Dulbecco's modified Eagle's medium (DMEM), supplemented with 10% fetal bovine serum (FBS). P19 cells were grown on gelatin-coated dishes. Satellite cells were cultured as previously described (Dahlqvist et al., 2003). Cortical embryonic stem cells were isolated from rat E14-15 and were cultured in N2 medium. For experimental treatment of cells, see the Supplemental Data.

Immunocytochemistry

Cells were fixed in 4% paraformaldehyde, washed with PBS, blocked in blocking solution (3% BSA, 1% Triton X-100 in PBS) for 20 min, and incubated with primary antibody for 1 hr. The antibodies used were mouse anti-myosin heavy chain; anti-MHC (MF20, Hybridoma Developmental Studies) diluted 1:15, mouse anti-Tuj-1, and/or genetic loss of VHL, and/or certain hypoxia, such as tumor development, in which deregulation of both HIF-1α- and Notch-mediated signaling events have been implicated (Radtke and Raj, 2003; Weng and Aster, 2004). As many tumors show elevated expression of HIF-1α, caused by hypoxia inherent to growing tumors and/or genetic loss of VHL (Kondo and Kaelin, 2001), it will be interesting to investigate whether the elevated levels of HIF-1α are paralleled by increased Notch signaling, and whether the ensuing Notch induction contributes to tumor development.

In conclusion, the data presented here demonstrate a link between hypoxia and Notch signaling and provide insights into how hypoxia maintains the undifferentiated cell state, by using the Notch signaling mechanism. The data also point to an important role for HIF-1α in this process and to the fact that it can interact with the Notch intracellular domain to link hypoxic information to a Notch response. These data advance our understanding of how Notch crosstalks with other signaling mechanisms and may open up possibilities to control various aspects of the hypoxic response by experimentally manipulating Notch signaling.

Figure 7. Schematic Depiction of Crosstalk between Notch and Hypoxia

In this model, two modes of the hypoxic response are shown: (1) the canonical hypoxic signaling leading to activation of downstream genes such as VEGF, PGK1, and Epo through HIF1α/HIF-1β binding to HRE elements in the corresponding promoters; and (2) maintenance of the stem cell state through interaction with the Notch signaling pathway. In the latter case, HIF-1α and Notch ICD form a point of convergence between the two signaling mechanisms, leading to stabilization of Notch ICD, recruitment of HIF-1α to Notch-responsive promoters, and activation of Notch downstream genes (Hey and Hes).
RNA Extraction and Quantitative RT-PCR

Cells were grown in normoxic or hypoxic (1% O₂) conditions for 4 hr. RNA from P19 and C2C12 cells were extracted with Tri Reagent (Sigma), and RNA from embryonic cortical cells was prepared with the Qiagen RNeasy Mini Kit according to the manufacturer’s instructions. RNA from fibroblast cells was extracted by the MicroMid Total RNA Purification System (Invitrogen) (for details, see the Supplemental Data).

Immunoprecipitation Assays

Protein-protein interaction assays were performed by using in vitro-translated proteins produced in rabbit reticulocyte lysate (Promega) according to the manufacturer’s instructions, in the absence or presence of [35S]-methionine (for details, see the Supplemental Data).

Protein Extraction and Western Blot

P19 cells were lysed in high-salt buffer (50 mM Tris-HCl, 500 mM NaCl, 1% NP-40, and 20% glycerol) supplemented with 0.5 mM PMSF and 5 mM 2-mercaptoethanol. COS-7 cells were lysed in lysis buffer (10 mM Tris-HCl, 300 mM NaCl, 1.5 mM MgCl₂, and 0.65% NP-40). Lysates were cleared by centrifugation for 30 min at 14,000 rpm. Western blot analysis is described in the Supplemental Data.

Pulse-Chase Experiments

P19 cells transfected with pC2/Notch 1 ΔE were cultured in DMEM medium overnight. The next day, culture dishes were pooled and split. A total of 16 hr after transfection, cells were subjected to an [35S]-methionine pulse for 4 hr following a wash with PBS and culture in DMEM in hypoxic conditions (1% O₂) or in normoxia. Lysis of cells, immunoprecipitation, and gel analysis are described in the Supplemental Data.

Coculture and Chromatin Immunoprecipitation Experiments

The system for activation of Notch signaling by coculture has been previously described (Lindell et al., 1995). C2C12 cells stably expressing Notch-1 were plated, and the next day either control human 293T or Serrate-1-expressing 293T cells were seeded at a density equal to the monolayer of these cells. The coculture was subjected to either normoxia or hypoxia for 4 hr before isolation of cell extracts. The chromatin immunoprecipitation procedures are described in the Supplemental Data.

Supplemental Data

Supplemental Data including data for astrocytic differentiation of neural progenitors and a more detailed description of the Experimental Procedures are available at http://www.developmentalcell.com/cgi/content/full/9/5/617/DC1/.

References

Ivan, M., Kondo, K., Yang, H., Kim, W., Vaijiano, J., Ohh, M., Salic, Received: January 7, 2005
Revised: July 8, 2005
Accepted: September 12, 2005
Published: October 31, 2005

